Supporting Information for

Massadine, a Novel Geranylgeranyltransferase Type I Inhibitor, from the Marine Sponge Stylissa aff. massa

Shinichi Nishimura,[†] Shigeki Matsunaga,[†] Mitsuyoshi Shibazaki,[‡] Kenichi Suzuki,[‡] Kazuo Furihata,[§] Rob W. M. van Soest, ^L and Nobuhiro Fusetani[†]*

Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, Microbiology Research Department, Drug Serendipity Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., 1-1-8 Azusawa, Itabashi-ku, Tokyo 174-8511, Japan, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and Institute of Taxonomic Zoology, University of Amsterdam, P.O. Box 4766, 1009 AT, Amsterdam, The Netherlands.

S1	Experimental		
S2	Table S1.	1 H, 13 C, and 15 N NMR Spectral Data for 1 in CD ₃ OH/TFA (370 : 2).	
S3	Table S2.	¹ H NMR and ROESY Spectral Data for 1 in DMSO- <i>d</i> ₆ .	
S4	Figure S1.	FAB-MS spectrum of massadine.	
S5	Figure S2	¹ H NMR spectrum of massadine (CD ₃ OH, 600 MHz).	
S6	Figure S3.	¹ H NMR spectrum of massadine (DMSO- <i>d</i> ₆ , 600 MHz).	
S7	Figure S4.	¹³ C NMR spectrum of massadine (CD ₃ OH, 150 MHz).	
S8	Figure S5.	COSY spectrum of massadine (CD ₃ OH).	
S9	Figure S6.	COSY spectrum of massadine (DMSO- d_6).	
S10	Figure S7.	NOESY spectrum of massadine (CD ₃ OD).	
S11	Figure S8.	ROESY spectrum of massadine (DMSO- d_6).	
S12	Figure S9.	¹ H/ ¹³ C HMQC spectrum of massadine (CD ₃ OD).	
S13	Figure S10.	¹ H/ ¹³ C HMBC spectrum of massadine (CD ₃ OH).	
S14	Figure S11.	¹ H/ ¹⁵ N HSQC spectrum of massadine (CD ₃ OH).	
S15	Figure S12.	¹ H/ ¹⁵ N HMBC spectrum of massadine (CD ₃ OH).	
S16	Figure S13.	INADEQUATE spectrum of massadine (CD ₃ OD).	
S17	Figure S14.	<i>J</i> -resolved ¹ H/ ¹³ C HMBC spectrum of massadine (CD ₃ OD).	
S18	Figure S15.	Deuterium-induced ¹³ C NMR isotope shifts.	
S19	Figure S16.	Interpretation of CD spectrum of massadine.	
S20	Figure S17.	CD spectrum of a model compound.	
S21	Figure S18.	CD spectrum of a model compound.	

Experimental Section

General Methods, see reference 6.

Animal Material. The sponge samples were collected by hand using scuba at a depth of 15 m off Atami in the Gulf of Sagami (35° 09' N, 139° 08' E). The sponge was identified as *Stylissa* aff. *massa* (Carter) and a voucher specimen (ZMA POR 16997) was deposited at the Zoological Museum of the University of Amsterdam.

Extraction and Isolation. The frozen sponge (900 g) was extracted three times with MeOH, and the combined extracts were concentrated and partitioned between water and ether. The ether layer was further partitioned between *n*-hexane and 90 % MeOH. The 90% MeOH and aqueous layers were combined, concentrated, loaded on ODS flash column, and eluted with water, MeOH, and MeOH/AcOH (9 : 1). The MeOH and MeOH/AcOH (9 : 1) fractions were combined, and gel filtrated on Sephadex LH20 with MeOH. Active fractions were subjected to ODS HPLC on Cosmosol AR-II using gradient solvent system with 27 – 33 % aq MeCN containing 0.05 % TFA. Fractions containing massadine were further purified on Cosmosil AR-IIwith 30 % MeCN containing 0.05 % TFA followed by final purification on the same column with 55 % MeOH containing 0.05 % TFA to furnish massadine (57 mg, 6.3 x 10⁻³ % yield based on wet weight).

Massadine (1): yellow powder; $[α]^{17}_D$ –12° (c 0.10, MeOH); UV (MeOH) $λ_{max}$ 278 nm (ε 20,000); CD $λ_{ext}$ 271 nm (Δε -0.5), 282 (0.0), 294 (+ 0.8); IR (KBr) $ν_{max}$ 3320-3200, 1713, 1680, 1568, 1523, 1416, 1324, 1203 cm⁻¹; HRFABMS (positive) m/z 828.8735 (M + H)⁺ (calcd for $C_{22}H_{25}^{79}Br_2^{81}Br_2N_{10}O_5$, Δ +3.3 mmu); 1H and ^{13}C NMR data, see Table S1 and S2.

Enzyme Inhibition Assay. The Assay procedure is described in reference 6.

Antifungal Test. MIC values were determined by the microdilution method described in National Committee for Clinical Laboratory Standards documents M27-A and M38-P.

Table S1. ¹H, ¹³C and ¹⁵N NMR Spectral Data for 1 in CD₃OH ^a

Position No.	¹ H (mult., J in Hz)	¹³ C (mult.)	¹⁵ N ^b	HMBC ^c	NOESY
1	2.11 (m)	42.1 (d)		C2, 3, 15, 1'	4, 12, 1'a, 1'b, 1"a
2	2.41 (d, 12.3)	44.2 (d)		C1, 3, 9, 13, 1', N4, 12	7, 9, 1'a, 1'b, 2'-NH
3		89.3 (s)			
4-NH	9.60 (brs)		104.1	C3, 5, 7, N6	1, 7
5		158.8 (s)			
6-NH	8.95 (brs)		94.1	C3, 5, N4	7
7	5.41 (s)	92.4 (d)		C3, 9, 5	2, 4, 6
9	5.65 (s)	84.3 (d)		C7, 11, 14, N10, 12	2, 10, 12, 14
10-NH	9.20 (brs)		99.7	C9, 11, 13, N12	9
11		159.3 (s)			
12-NH	9.19 (brs)		91.2	C9, 11, 13, N10	1, 9, 14, 1"b
13		72.0 (s)			
14	3.70 (s)	79.5 (d)		C1, 2, 3, 13, 1", N12	9, 12, 15, 1"a, 2"-NH
15	2.16 (m)	52.9 (d)		C1, 14, 1"	2, 14, 1'a, 1'b, 2'-NH, 2"a, 2"b, 2"-NI
1'a	3.48 (ddd, 14.1, 5.8, 5.6)	43.0 (t)		C1, 2, 15, 3'	1, 2, 15, 1'b, 2'-NH
1'b	3.92 (ddd, 14.1, 5.8, 3.4)			C1, 2, 15, 3'	1, 2, 15, 1'a, 2'-NH, 2"-NH
2'-NH	8.33 (brt, 5.8)		105.4	C1', 3'	2, 15, 1'a, 1'b, 5'
3'		162.2 (s)			
4'		128.5 (s)			
5'	6.90 (s)	114.9 (d)		C3", 4", 7", N8'	2'-NH
6'		100.0 (s)			
7'		106.7 (s)			
8'-NH	12.1(brs)		112.0		
1"a	3.37 (ddd, 13.9, 10.4, 5.9)	4 3.0 (t)		C1, 14, 15, 3"	15, 2"-NH
1"b	3.53 (ddd, 13.9, 5.9, 5.4)			C14, 15, 3"	12-NH, 15, 2"-NH
2"-NH	8.43 (brt, 5.9)		107.2	C1", 3"	14, 15, 1"a, 1"b, 5"
3"		162.2 (s)			
4"		128.8 (s)			
5"	6.84 (s)	114.6 (d)		C3", 4", 7", N8"	2"-NH
6"		100.0 (s)			
7"		106.5 (s)			
8"-NH	12.2 (brs)		112.3		

a NMR experiments were carried out in CD₃OH/TFA (370 : 2). b Chemical shift values were determined by $^{1}H/^{15}N$ HSQC and $^{1}H/^{15}N$ HMBC spectra. c Both of $^{1}H/^{13}C$ HMBC and $^{1}H/^{15}N$ HMBC spectral data are presented in this column.

Table S2. ¹H NMR and ROESY Spectral Data for 1 in DMSO-d₆

Position No.	¹ H (mult., J in Hz)	ROESY
1	1.90 (m)	4, 12, 2'-NH
2	1.63 (d, 12.2)	7, 9, 2'-NH, 3-OH, 14-OH
3		
4-NH	9.40 (brs)	1, 1'a, 1'b
5		
6-NH	9.00 (brs)	7
7	5.21 (s)	2, 6, 9, 3-OH
9	5.40 (s)	2, 7, 10, 14, 14-OH
10-NH	9.36 (brs)	9
11		
12-NH	9.05 (brs)	1, 14, 1"a, 1"b
13		
14	3.44 (s)	9, 12, 14-OH
15	1.86 (m)	2"-NH, 14-OH
1'a	3.52 (m)	4, 2'-NH, 5', 2"-NH, 3-OH
1'b	3.46 (m)	4, 2'-NH, 5', 2"-NH, 3-OH
2'-NH	7.90 (br)	1, 2, 1'a, 1'b, 1"a, 5'
3'		
4'		
5'	6.86 (s)	2'-NH, 1'a, 1'b
6'		
7'		
8'-NH	12.58 (s)	
1"a	3.35 (m)	12, 2'-NH, 5', 2"-NH
1"b	3.25 (m)	12, 2"-NH
2"-NH	8.28 (br)	15, 1'a, 1'b, 1"a, 1"b, 5"
3"		
4"		
5"	6.82 (s)	1"a, 2"-NH
6"		
7"		
8"-NH	12.65 (s)	
3-OH	7.36 (s)	2, 7, 1'a, 1'b
14-OH	5.66 (s)	2, 9, 14, 15

Figure S1. FAB-MS spectrum of massadine (positive mode, p-nitrobenzylalcohol as matrix)

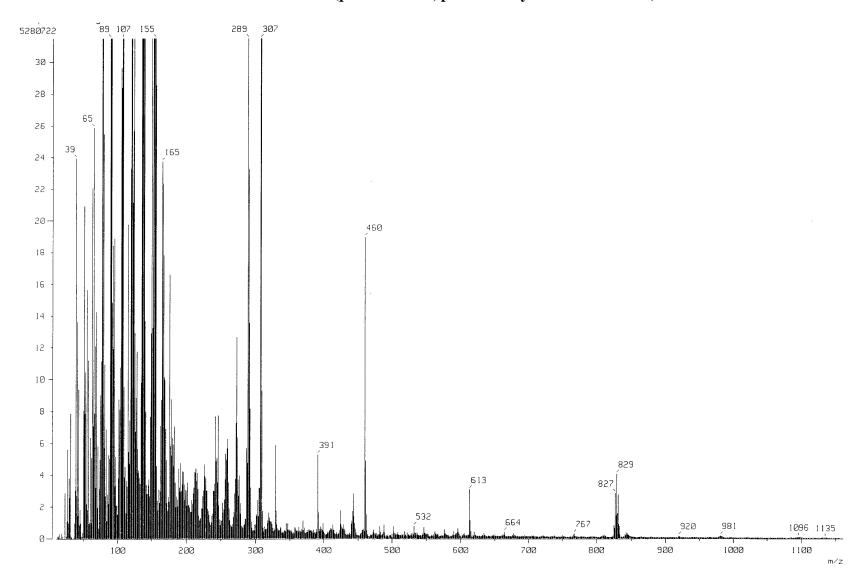


Figure S2. ¹H NMR spectrum of massadine (CD₃OH, 600 MHz) (upper: water is not suppressed, lower: watergate)

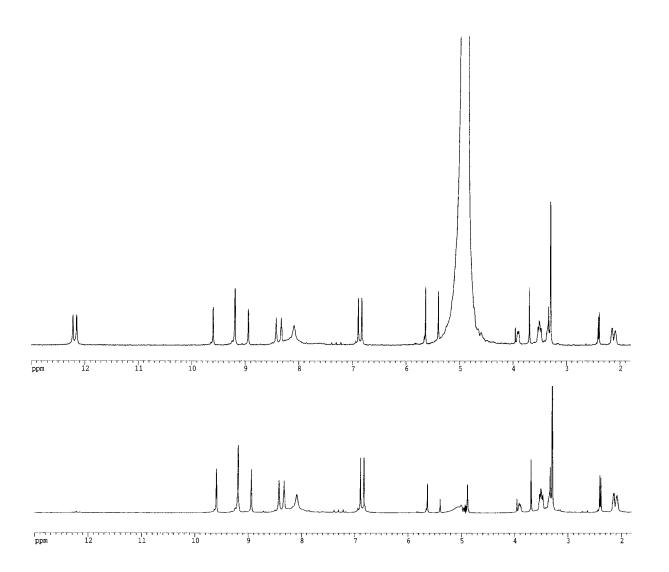


Figure S3. $^1\mathrm{H}$ NMR spectrum of massadine (DMSO- d_6 , 600 MHz)

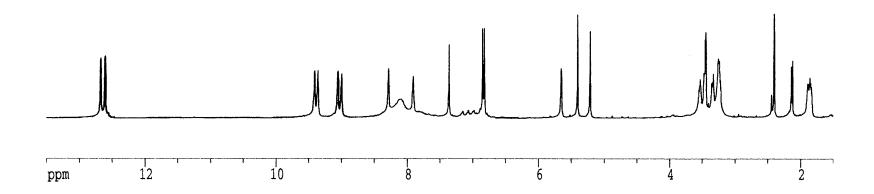


Figure S4. 13 C NMR spectrum of massadine (CD₃OH, 150 MHz)

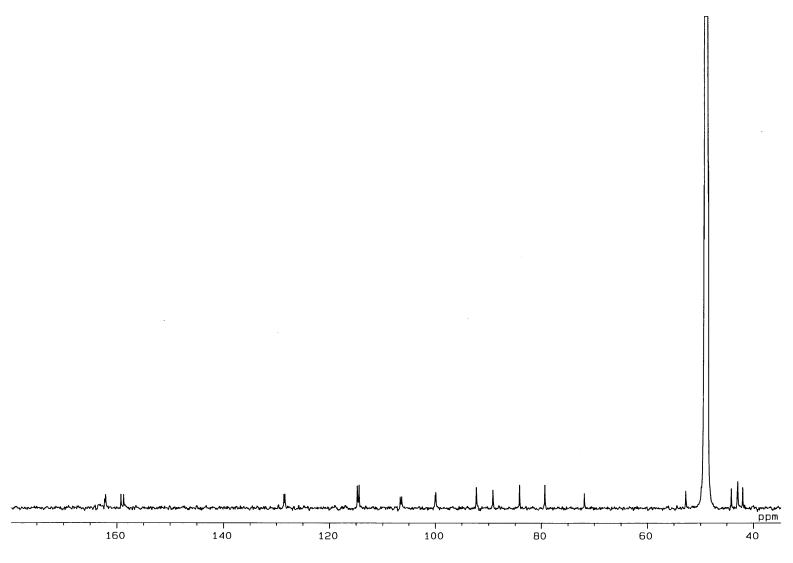


Figure S5. COSY spectrum of massadine (CD₃OH)

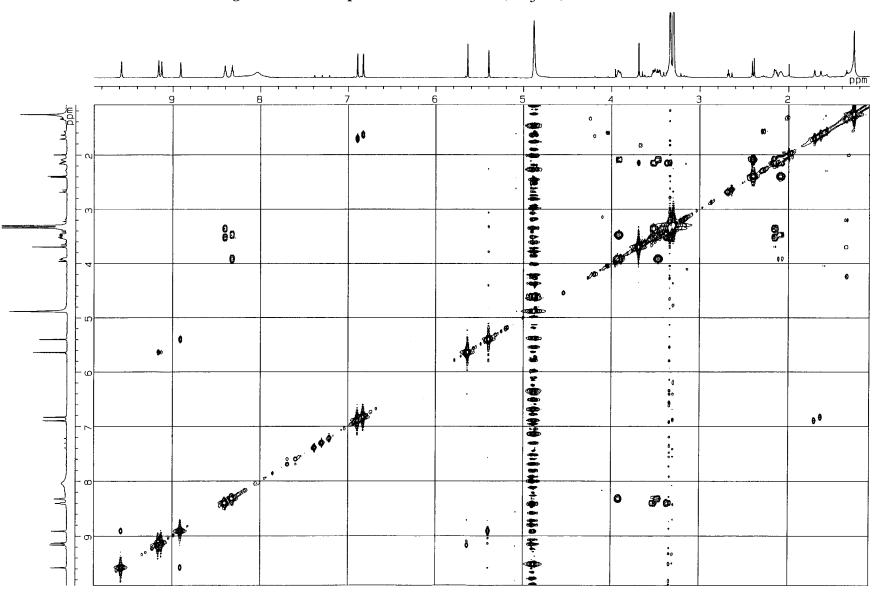


Figure S6. COSY spectrum of massadine (DMSO- d_6)

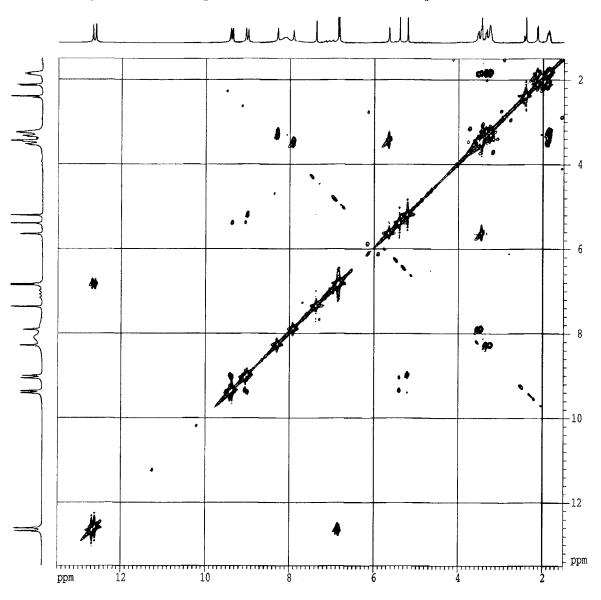
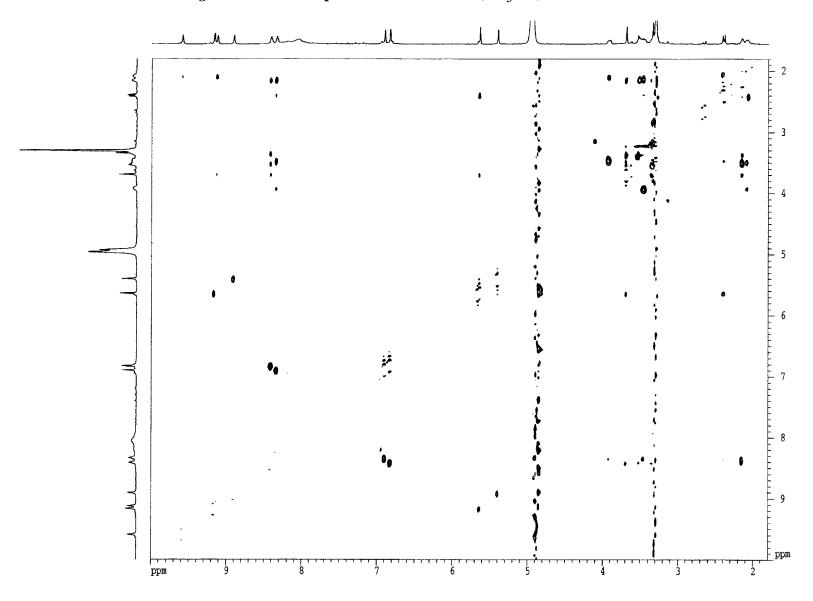



Figure S7. NOESY spectrum of massadine (CD₃OH)

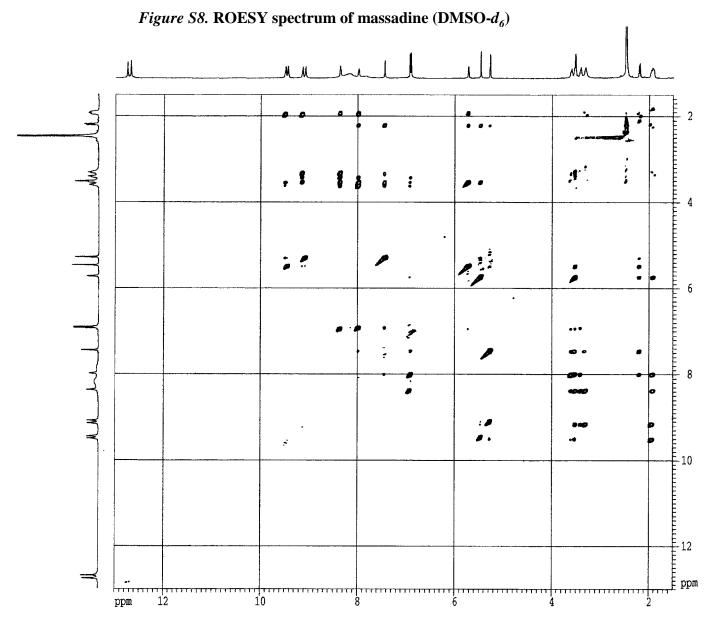


Figure S9. $^{1}H/^{13}C$ HMQC spectrum of massadine (CD $_{3}$ OD)

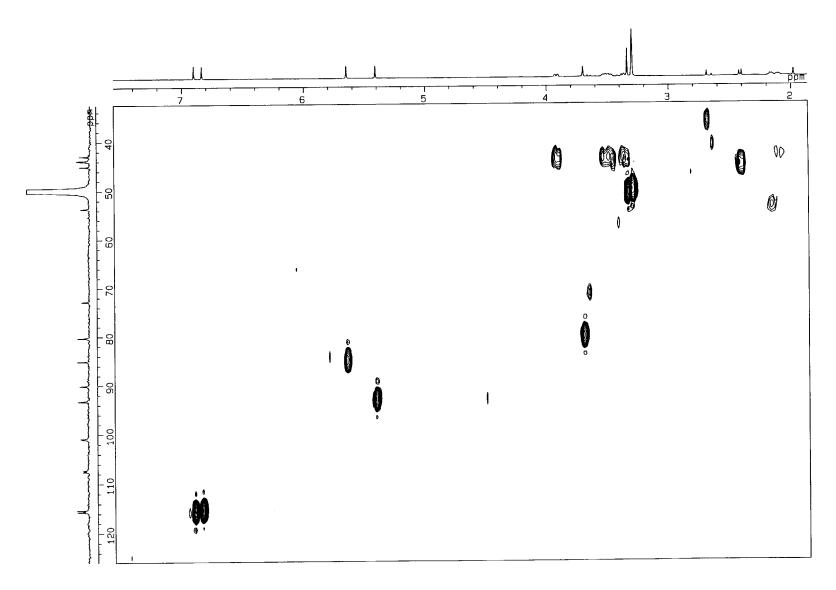


Figure S10. $^{1}H/^{13}C$ HMBC spectrum of massadine (CD₃OH)

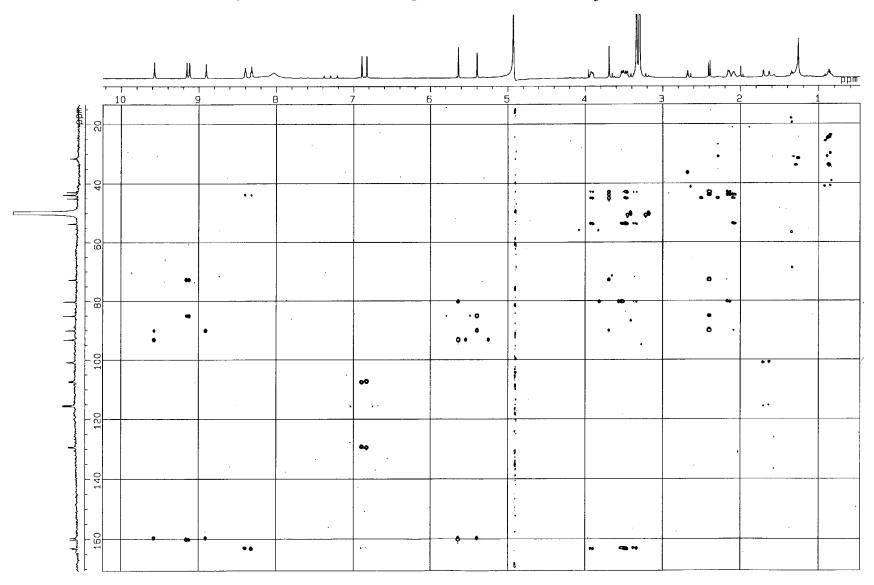


Figure S11. ¹H/¹⁵N HSQC spectrum of massadine (CD₃OH)

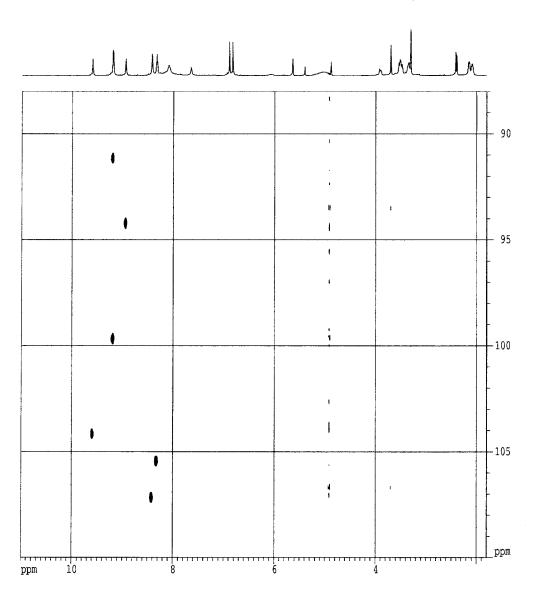


Figure S12. 1 H/ 15 N HMBC spectrum of massadine (CD $_{3}$ OH)

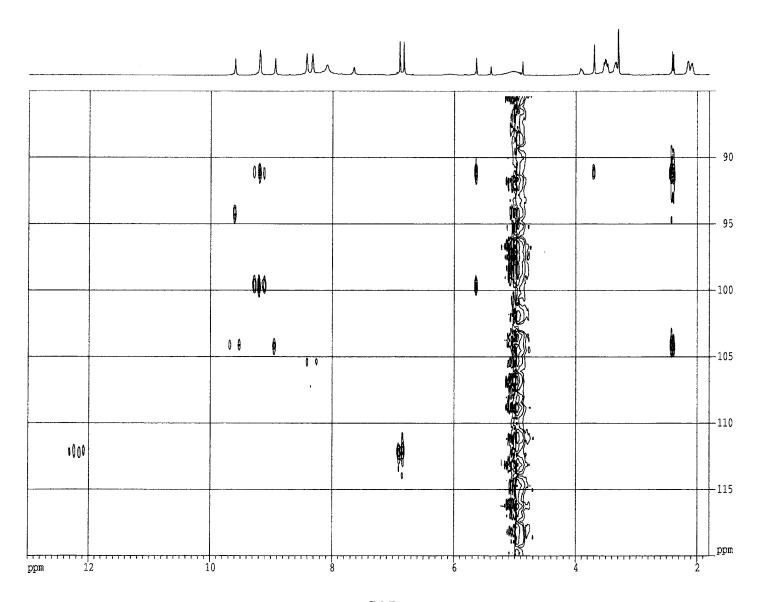


Figure S13. INADEQUATE spectrum of massadine (CD₃OH)

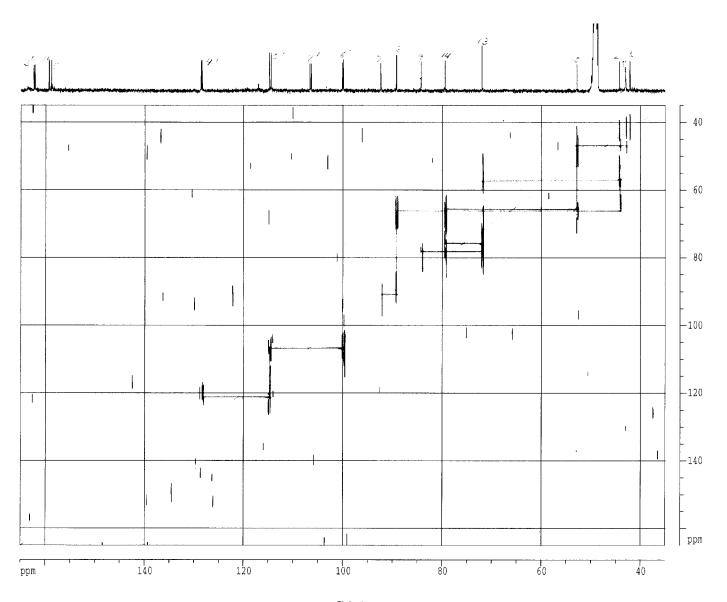
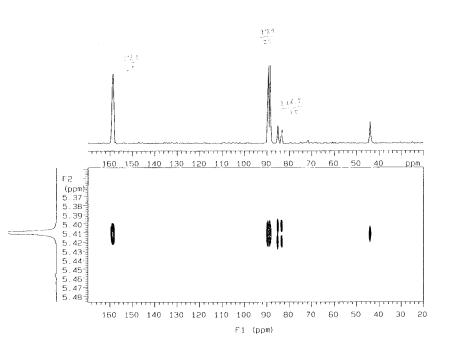



Figure S14. J-resolved $^{1}H/^{13}C$ HMBC spectrum of massadine (HMBC correlations from H-7 (left) and H-9 (right)

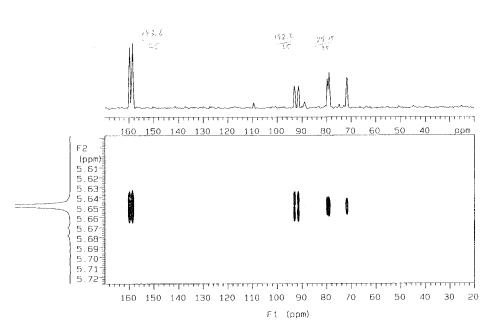
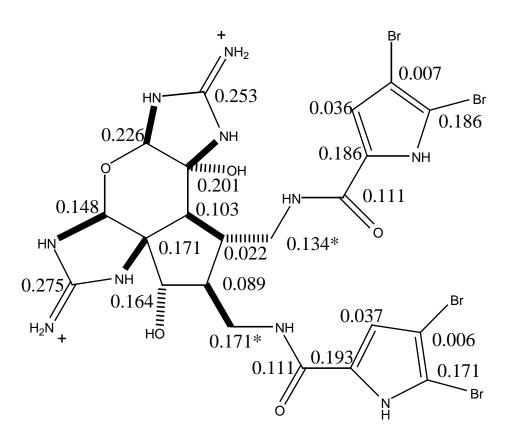



Figure S15. Deuterium-induced ¹³C NMR isotope shifts.

 $\Delta \delta$ (ppm) = $\delta_{\text{CD3OH}} - \delta_{\text{CD3OD}}$ * These values can be interchangeable

Figure S16. Interpretation of the CD spectrum of massadine.

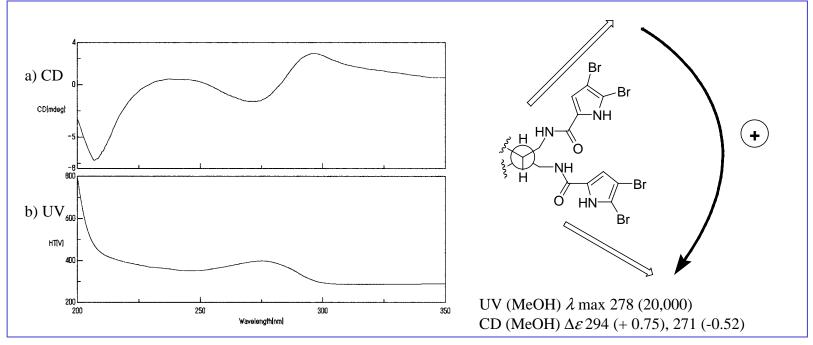
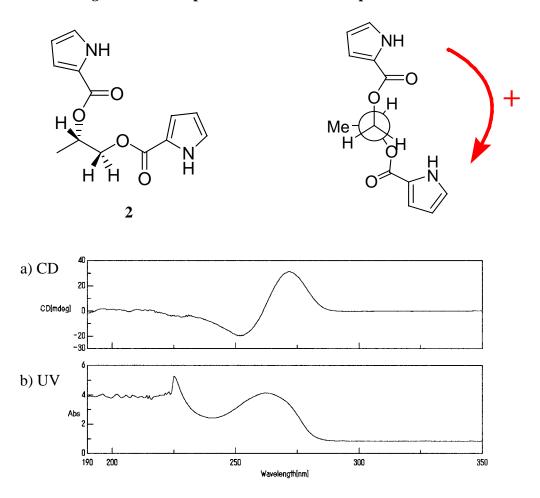
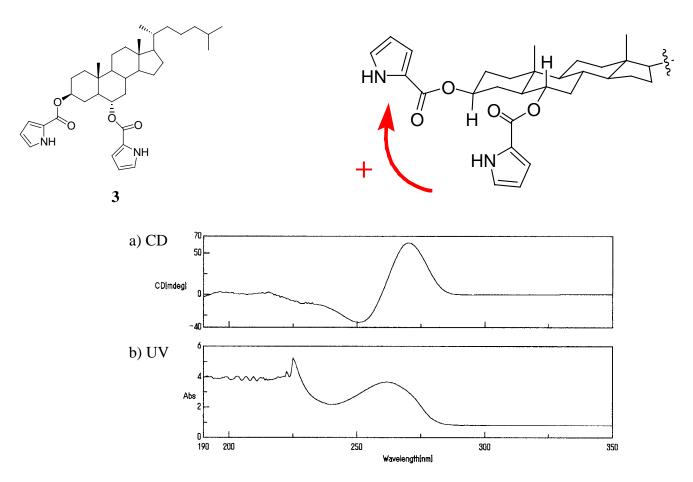




Figure S17. CD spectrum of a model compound.

(*S*)-propane-1,2-diol bis(pyrrole-2-carboxylate) (2): To a solution of (*S*)-(+)-1,2-propanediol in DCM/THF (1 : 2) at rt was added pyrrole-2-carboxylic acid, DCC, and DMAP. The reaction mixture was stirred at rt for 4 days, extracted with EtOAc, and fractionated by SiO₂ column chromatography followed by RP-HPLC to furnish 2: UV (DCM) λ max (ε) 263.0 (15,600) nm; CD (DCM) λ ($\Delta\varepsilon$) 272.0 (+5.0), 261.0 (0.0), 252.0 (-3.1) nm; ¹H NMR (600 MHz, CDCl₃) δ 9.19 (brs, 2H) 6.97-6.95 (m, 4H), 6.28-6.24 (m, 2H), 5.43 (ddq, J = 6.5, 6.5, 3.9 Hz, 1H), 4.42 (dd, J = 11.9, 3.9 Hz, 1H), 4.39 (dd, J = 11.9, 6.5 Hz, 1H), 1.39 (d, J = 6.5 Hz, 3H); ESI-MS (positive) m/z 265 (M + Na)⁺.

Figure S18. CD spectrum of a model compound.

5α-Cholestane-3β,6α-diol bis(pyrrole-2-carboxylate) (3): To a solution of cholesterol in dry THF was added 2M BH₃·SMe₂ in toluene, and the solution was stirred at rt for 12 h. Water, 30 % H₂O₂, and 3N NaOH was added to the reaction mixture and kept stirring at rt for 3h. The reaction mixture was extracted with CHCl₃, dried over MgSO₄, concentrated, and reacted with pyrrole-2-carboxylic acid as noted in Figure S17 to yield **3**: UV (DCM) λ max (ε) 263.0 (32,800) nm; CD (DCM) λ ($\Delta\varepsilon$) 272.0 (+22.3), 259.0 (0.0), 250.5 (-12.1) nm; ¹H NMR (600 MHz, CDCl₃) δ 9.11 (brs, 1H), 9.07 (brs, 1H), 6.91 (m, 1H), 6.89 (m, 2H), 6.86 (m, 1H), 6.22 (m, 2H), 4.88 (m, 2H), 2.10-0.65 (several, 44H); ESI-MS (positive) m/z 613 (M + Na)⁺, 1181 (2M + H)⁺.